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Abstract

Response times (RTs) are often the main signal of interest in cognitive psychology, but are often ignored
in functional MRI (fMRI) analyses. In fMRI analysis the intensity of the signal serves as a proxy for
the intensity of local neuronal activity, but changes in either intensity or duration of neuronal activity
can yield identical fMRI signals. Therefore, if RTs are ignored and pair with neuronal durations, fMRI
results claiming intensity differences may be confounded by RTs. We show how ignoring RT's goes beyond
this confound, where longer RTs are paired with larger activation estimates, to lesser-known issues where
RTs become confounds in group-level analyses and, surprisingly, how the RT confound can induce other
artificial group-level associations with variables that are not related to the condition contrast or RTs.
We propose a new time-series model to address these issues and encourage increasing focus on what the
widespread RT-based signal represents.

Introduction

The goal of task-based functional magnetic resonance imaging (fMRI) studies is to infer involvement of
particular brain regions or networks in specific cognitive functions. These studies are often designed using
the subtraction logic first developed by Donders (1969) for the analysis of response times (RTs), in which
comparisons are made between different task conditions thought to differ with regard to involvement of
some specific cognitive function(s). For example, in the well-known Stroop task, stimuli are presented where
color and text of words are either congruent (e.g. “blue” presented in blue) or incongruent (e.g. “blue”
presented in red) (Stroop, 1935). Individuals are consistently slower at naming stimulus color when the
written word is incongruent compared to congruent, and this difference in response times is interpreted
as indexing engagement of an additional cognitive process in the incongruent condition, such as conflict
detection or resolution (Botvinick et al., 2001). Similarly, greater activation in regions such as the dorsal
medial frontal cortex (AMFC) in fMRI studies of the Stroop task have been interpreted as reflecting a specific
role in these cognitive processes (Botvinick et al., 1999; MacDonald et al., 2000; Kerns et al., 2004).

The facile nature of the common inference from activation to “involvement” belies the complexity of
the link between fMRI signals and underlying neuronal activity (cf. Logothetis (2008)). Here we focus
on disambiguating these interpretations of activation: namely, whether a difference in activation reflects
differential engagement of a particular computation, or engagement of the same computation for a different
amount of time. Because of the slow nature of the blood oxygen-level dependent (BOLD) response, measured
in most fMRI studies, it is difficult to distinguish the degree to which a difference in evoked BOLD response
reflects an increase in amplitude of neuronal response versus a difference in response duration (Figure 1).
This indeterminacy has been known since the early days of fMRI (Savoy et al., 1995; Jezzard et al., 2001)



and establishes the importance of considering the potential for differences in duration of neural activity to
confound amplitude estimates in some fMRI tasks.

For clarity, we define some terms used throughout the present paper. Time-series level analysis refers
to linear models of fMRI time-series. Group-level analyses refer to analyses of estimated fMRI contrasts
across a set of subjects including a single group average (1-sample t-test), group average comparisons (2-
sample t-test) and linear associations with a covariate (e.g., phenotype). Between-trial RT adjustment is
formally carried out in the time-series level. Between-subject RT confounds will only impact group-level
models involving group comparisons or associations but not single group averages.

Over a decade ago, Grinband et al. (2008) started the discussion about between-trial modeling of response
times in fMRI analysis. They proposed a variable epoch model, where trial-by-trial neuronal durations were
assumed to track with RT's as opposed to a common modeling practice that assumed each trial was sufficiently
modeled as a brief impulse of constant duration (e.g., .1s). The impulse model was considered to be adequate
due to the belief that differences in RTs would not be detectable. The variable epoch model yielded more
powerful results than the impulse model or an impulse model with an RT-modulated regressor. Importantly,
this model’s performance studied within-subject power for a single condition versus baseline and assumed
the neuronal activation duration mirrors the RTs. The assumption that neural activity duration scales with
RT may be particularly suitable when the neural signature is theoretically linked to the accumulation of
information towards a response, as in the accumulation of activity towards a response in the Diffusion
Decision Model (Ratcliff, 1978). There are likely tasks and regions of the brain for which this assumption
and therefore this modeling strategy is appropriate, but this is a strong theoretical commitment that may
not be suitable for all tasks or for the whole brain. How this model performs for condition differences and
when model assumptions are violated has not been well studied.

Yarkoni et al. (2009) examined the relationship between RT and fMRI signal across a variety of tasks in an
effort to better understand how RT's were related to BOLD signal amplitude. RT-driven amplitude differences
were found to be due to “time on task” or simply duration differences in the neuronal signal across trials
(constant activity that varies in duration), as opposed to differences in the magnitude of neuronal activity.
A compelling result of this work was the identification of a widespread network of brain regions that showed
significant correlation with RTs across a variety of tasks including the dMFC which was previously described
as reflecting conflict in the Stroop task. This calls into question how RT-based activation differences might
be interpreted given they are present across many tasks.

A subsequent series of papers focused on the Stroop incongruent versus congruent contrast and whether
dMFC-based activation reflected conflict, as proposed by a prominent theory Botvinick et al. (2001). This
inspiring discourse across multiple publications illustrates the challenge of interpreting RT-correlated acti-
vation and demonstrates the rigorous work required to combine behavioral theory of a task with imaging
analysis results when RT-correlated activation is found. Both Grinband et al. (2011) and Carp et al. (2010)
showed differences in activation between slow and fast congruent trials were similar to differences between
all congruent and incongruent trials in the dMFC, indicating the commonly found effect was driven by RTs.
Follow-up work by Yeung et al. (2011) suggested that in their theory of conflict monitoring, RT and con-
flict could not be so cleanly dissociated. Ultimately, a consensus was not reached (Brown, 2011; Grinband
et al., 2011; Nachev, 2011) and it did not have widespread impact on task modeling or interpretation. Of
the 22 publications identified from a PubMed search for “stroop task fmri 20217, only 4 addressed RT in
their analyses and interpretation of their results. It is beyond the scope of this present work to come to an
agreement on how to interpret Stroop-based fMRI activation maps. Our goal is to revive the discussion of
how RTs can impact fMRI results and offer a new modeling framework that flexibly unconfounds RT from
condition differences.

Limited focus has been given to links connecting RT adjustment in time-series analyses to between-
subject RT confounds in group-level analyses. For example, if between-trial RT adjustment is ignored in the
Stoop task, incongruent versus congruent fMRI differences are likely to correlate with incongruent versus
congruent RT differences. In earlier work (Carp et al., 2012), this relationship was alluded to in a result where
correlation between age and the Stoop incongruent versus congruent contrast changes when between-trial
RT adjustment is performed. This work highlights the possibility of between-trial RT adjustment impacting
between-subject analyses, but the link has not been formally defined. We formalize the relationship and reveal
a surprising issue where ignored between-trial RT variability can introduce other confounds not related to
RTs in group-level models. For example, if “time spent outdoors” (TO) is equally related to two conditions,
but not the condition difference, failure to address between-trial RT variability can introduce a TO effect to
group-level analyses of the condition difference contrast even when RT is not related to TO. This problem
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Fig. 1: How amplitude and duration of neuronal signal interact to yield similar BOLD responses. The left
hand column shows 3 different examples of neuronal signals that evoke the same BOLD response shown in
the right hand panel.

cannot be fixed within group-level analyses, but we show here that it can be eliminated using an improved
time-series analysis.

The overarching goal of the present work is to revive interest in understanding and addressing RT-
correlated activation to improve our interpretation of the fMRI signal. The standard modeling approach
ignores RTs and is at risk of inflated Type I errors whenever RT effects are present, which includes a large
set of voxels in the brain. BOLD signals can also relate to RTs at different levels for each condition in an
interaction effect and the model proposed by Grinband et al. (2008) is more appropriate to use in regions
where an interaction is hypothesized, but has limitations for whole brain analysis. We extend and improve
upon previous ideas to incorporate RT into fMRI data analyses, proposing a new modeling strategy that
flexibly accommodates both areas with signal durations that scale with RTs and those that do not, with
controlled type I error rates, making it particularly suitable for the common procedure of whole brain
analysis. We show how conflict between model assumptions and data generating process can inflate type I
error rates, reduce power and introduce both RT-related and RT-unrelated confounds in group-level analyses.
The presence of group level confounds is an especially important consideration when using contrast estimates
supplied by databases for large neuroimaging studies, since the solution requires repeating the time-series
analysis, which may not be possible for many users of these databases. Last, we replicate the findings of
Yarkoni et al. (2009) by demonstrating a large RT-based activation pattern across a set of 7 fMRI tasks,
each with approximately 91 subjects.

Results

Simulations

Statistical models used for fMRI data generally involve convolution of a vector representing trial or stimulus
onsets with a canonical hemodynamic response function (Figure 1) to create regressors for use in linear
modeling (Poldrack et al., 2009). Trials can be represented either as delta functions or as boxcar functions
with some duration; when a boxcar is used, the boxcar duration is set to a constant value such as stimulus
duration or a brief default value (e.g., 0.1 second). In Figure 2 this model is referred to as “Constant duration,
no RT” (hereafter as ConstDurNoRT). Because of the indeterminacy described above (Figure 1), the specific
constant value used for stimulus duration will not generally impact the statistical inferences derived from the



model, as it will simply scale the values of the parameter estimates along with their variances (assuming the
trial durations are relatively short, <2s). This standard approach does not include any information about
response times; thus, if two conditions differ in RTs when true activation magnitudes do not differ, the
condition with longer RTs may have higher estimated activation if the signal durations track RTs.

Model name Unconvolved regressor Duration Modulation
—i L A N
1 Constant Duration, no RT s one
(ConsDurNoRT) . . . 1s None
U _I_I_I_ RT None
. . . s None
3 Constant Duration, RTMod 1s None
(ConsDurRTMod) —.—.—.— :
- 1. s RT*
L 1s None
Constant Duration, RTDur
4 “ s None
(ConsDurRTDur)
I I I | I I RT* None

Fig. 2: Models assessed in the simulation study. Models are described by name, unconvolved regressor
visualization, duration used for boxcars of unconvolved regressors and definition of the modulation used,
when present. Convolved regressors were used in data generation and modeling. The first model does not
include any response time information, the second model addresses RT through the duration of the regressors
and the third and fourth models add an RT regressor to the first model either using an RT modulated
regressor (Model 3) or an RT duration regressor (Model 4). *See Discussion Section for details on why RT
is not centered for the RT modulated regressor of Model 3 and why the RT Duration regressor of Model 4
is not orthogonalized.

Grinband et al. (2008) developed a modeling approach to address response times in fMRI data, where
boxcar durations for each trial varied by trial response times (labeled as “RT Duration/RTDur” in Figure 2).
This approach will appropriately scale the parameter estimates for regions in which neural activity durations
match RT durations, which we will refer to as “duration scales with RT”. This models an interaction and
since constant duration regressors are not included, the model implies each condition has a different linear
relationship between BOLD activation and RT, and that BOLD activation is 0 when RT is 0. One shortcoming
of this model is it will not correctly model activation in regions where neural activity duration does not scale
linearly with RTs.

To address these issues, we created a generalized model of RT that can identify RT effects separately from
the task effect (corrected for RT); the two implementations of this model are shown as “Constant Duration,
RTMod” (ConsDurRTMod) and “Constant Duration, RTDur” (ConsDurRTDur) in Figure 2. Each of these
models starts with the ConsDurNoRT regressors and adds a single RT regressor.ConsDurRTDur models
RTs through duration and ConsDurRTMod models RTs through parametric modulation. In both cases any
differences in RTs between conditions will be removed by the RT regressor, leaving the condition difference
effects to be interpreted as unconfounded estimates of activation in relation to the experimental manipulation.
This model can be extended to a full interaction model by splitting the single RT regressor into two RT
regressors, one for each condition. This will be further described in the Power Analysis results. Notably we
have not orthogonalized the RT regressor in ConsDurRTDur or mean centered the RTs in the RT regressor
of ConsDurRTMod, which will not have any impact on the estimate of the contrast of interest (condition
difference) but may negatively impact the interpretation of other contrasts or introduce RT confounds in
group level analyses. This will be further discussed in the Discussion section.



Response time data were simulated based on RTs from two different tasks: the Stroop task (based on
our data) and reported RT distribution parameters from a two-alternative, forced-choice categorization task
from Grinband et al. (2008). In each case RTs were generated by sampling from an ex-Gaussian distribution
(Ratcliff and Murdock, 1976); the specified ex-Gaussian parameters led to RTs that were generally longer for
the two-alternative, forced-choice categorization task (mean = 1337, sd = 706.5) compared to Stroop (mean
= 690, sd = 177.5). Another difference is the variance relative to the mean is smaller for the Stroop task
(coefficient of variation of .528 and .257 for the two-alternative, forced-choice categorization and Stroop tasks,
respectively). Interstimulus intervals (ISIs) were sampled from a Uniform distribution and condition order
was randomly presented. Time-series data where duration scales with RT were generated using the RTDur
model and data where duration did not scale with RT were generated using the ConstDurNoRT model.

For all models the contrast of interest was condition 2 - condition 1 and all simulation-based results
correspond to group-level analyses with 100 subjects. See the Methods for further details.

Error rates and power

We first assessed the false positive rate for each model on each of the simulated data sets for the condition
comparison contrast (Figures 3, Extended Data Fig. 1). In all cases the ConsDurRTDur model appropriately
controlled Type I error but the ConsDurRTMod model failed to control error rates for large RT differences
(>1s) when the signal duration scales with RT because longer RTs (>2s) are not fit as well by an RT
modulated regressor. The modulated regressor assumes the BOLD activation increases linearly with duration,
which is an assumption that only holds well for RTs under 2s, which will be explored in detail in the “RT-
based and RT-driven group-level confounds” section. Due to model assumption violations, ConstDurNoRT
had inflated error rates when activation duration did scale with RT, and RTDur had inflated error rates when
the signal duration did not scale with RT. Thus, the most commonly used model for task fMRI analysis,
ConstDurNoRT, suffers from substantial inflation of false positives in the face of RT differences between
conditions, because it inaccurately attributes the confounding RT signal to differences in the intensity of the
underlying neuronal signal. Larger Type I error rates observed with the Stroop-based RT reflects a reduced
RT standard deviation compared to the forced-choice categorization task, making RT-based differences easier
to detect. Results with a longer ISI (3-6s), are similar (Extended Data Fig. 1).

Only models with controlled Type I errors are considered in the power analyses since the inflated error
rates indicate bias in the contrast estimates. When signal duration does not scale with RTs, power for
ConsDurNoRT (true model) and ConsDurRTDur are compared (right panels, Extended Data Fig. 2) and
ConsDurRTMod is only considered if RTs are less than 2s (right panels, Figure 4). In this data setting,
the true model, ConsDurNoRT, has maximum power and ConsDurRTDur/ConsDurRTMod have negligable
power loss when the RT difference is .1s while ConsDurRTDur has a slight power reduction when the RT
differences is .8s (Extended Data Fig. 2). For large RT differences there can be mild collinearity between the
RT regressor and the conditions, which explains the power loss.

When signal duration does scale with RT's, power is considered for RTDur (true model) and ConsDurRT-
Dur. The data in this setting follow an interaction effect, so we added a 4 regressor interaction model that
combines the regressors from RTDur and ConsDurNoRT, where the contrast of interest is the comparison of
the RTDur regressors. When RTs are <2s (Figure 4), we add a second 4 regressor interaction model using
RT modulated regressors, which has been proposed by Carp et al. (2010, 2012); Weissman and Carp (2013).
In this setting the RTDur model will have maximal power (orange line, left panels Figures 4 and Extended
Data Fig. 2). Interestingly, the ConsDurRTDur model has only a slight power loss when the RT difference is
large (red lines, Extended Data Fig. 2) and is negligible for the RT difference of .1s (Figure 4). See Extended
Data Fig. 3 for an illustration of how condition differences from ConsDurRTDur can approximate RTDur
differences in this data setting. The 4 regressor interaction models have large losses in power for both RT
difference settings (Extended Data Fig. 2 and Figure 4). This large power loss is due to variable contrast
estimates caused by high collinearity between RT regressors and condition regressors, where the variance
inflation factors for the contrast of interest were almost always above the commonly accepted threshold of 5.

RT-based and RT-driven group-level confounds

The foregoing analyses, along with the previous work by Grinband, focused on confounding of RT between-
trials, which impacts average condition effects. Here we introduce a new problem of between-subject RT
confounds. Within-subject differences in average RT, corresponding to the contrasted conditions, can con-
found group-level analyses involving group comparisons or associations. For example, the incongruent versus
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Fig. 3: Type I error as RT difference between conditions increases. The two-alternative, forced-choice cat-
egorization task RT distribution was used in the top panels, while Stroop RT distribution was used in the
bottom panels. An ISIT between 2-4s was used and the inference of interest was for the 1-sample t-test of the
condition difference effect with 100 subjects. 2500 simulations were used to calculate the error rate. Models
with error rates larger than .05 are not valid.

congruent BOLD contrast estimate may correlate with the differences in average RTs for incongruent and
congruent conditions. This is of particular interest given the increasing focus on analyses of brain-behavior
correlations in MRI literature (e.g., Dubois and Adolphs (2016)).

The driving factor of correlations between condition differences in brain activation and corresponding
differences in RT's is simply due to the relationship between the activation estimate and RT when the data and
model assumptions are in conflict. For example, if signal durations scale with RTs and the ConstDurNoRT
model is used (duration = 1s), the relationship between the estimated activation, B , and the true activation,
B, is approximately B = B x RT, for a single trial (left panel, Figure 5), where the trend becomes nonlinear
after approximately 2s. As Figure 5 lays out, this implies the relationship between condition difference
estimates and RT differences is given by

52—B1=B><(ﬁ2—ﬁ1)- (1)

In the example shown in Figure 5, even though the true condition difference is 0 for all subjects, the average
estimated condition difference is nonzero across subjects and also has a linear relationship with the RT
difference (right panel, Figure 5). As is the case with all linear trends, this relationship does not require a
non-zero RT difference on average, but is driven by between-subject RT variability making it a potential
confound whenever using ConsDurNoRT.

Simulation results in Figure 6 show group RT difference correlations across all models and data types.
ConsDurNoRT and ConsDurRTMod produce correlations between contrast differences and RT differences
when signal durations scale with RTs, as does RTDur when signal durations do not scale with RTs. Cons-
DurRTDur does not induce correlations for either signal type. Although no true relationship between average
subject RT differences and fMRI condition differences exist, the mismatch between model assumptions and
data potentially introduce a group-level model RT confound. We did not introduce a specific between-subject
variance in the RT difference, implying the between-subject variance may be underestimated, but we did
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Fig. 4: Power when the RT difference is 0.1s as the condition difference increases. Only models that had
controlled error rates in Figure 3 are shown. The two-alternative, forced-choice categorization task RT
distribution was used in the top panels (Choice), while Stroop RT distribution was used in the bottom
panels. An IST between 2-4s was used and the inference of interest was for the 1-sample t-test of the condition
difference effect with 100 subjects. Model 1, ConsDurNoRT, is the true model for the right column and
model 2, RTDur, is the true model for the left column, so both indicate maximal power.

not want to artificially inflate the effect. Even so, it is within the ballpark of the expected true correlations
between brain and behavior measures (Marek et al., 2022).

In the previous example, the linear relationship at the group level is, B, the common activation for both
conditions and all subjects, but if activation differs between conditions or across subjects the confound will
be more complex and can even introduce new artifactual associations into group analyses. To illustrate how
false associations can be introduced, relax the assumption that B is the same across subjects, but preserve
the assumption that B is the same for both conditions. For example, assume time spent outdoors (T'0O) is
equally related to both conditions through the relationship,

B = Yo + ’YITO + €, (2)

noting T°0O is not related to the true difference in activation between conditions or RT's. If the signal durations
scale with RTs and ConsDurNoRT is used to estimate condition differences, both an artifactual RT difference
effect and an artifactual RT difference by T'O interaction are introduced to group-level data. This can be
seen by combining equations 1 and 2:

Br— B2 = (Y0 + nTO) x (RT:1 — RT») (3)
=% (ﬁl — ﬁg) + ’leO (ﬁl — ﬁg) .

Due to the interaction effect with 70O and the nonlinear impact of RT on the BOLD signal when RTs>2s,
adding RT difference as a confound regressor to the group model will not remedy these issues and should
be avoided as it may inflate the significance of the false association with T'O. The relationship between RT
and potential variables of interest will be more complex if the RT difference is correlated with that variable
or if the true activation difference and the variable of interest are correlated. This cannot be repaired within
group-level analyses, but only by replacing first-level analyses with ConsDurRTDur. This is unsettling news



How RT effects leak into group analysis under ConsDurNoRT
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Fig. 5: The relationship between signal duration and activation estimates and how it can cause RT effects
to leak into group analyses when using ConsDurNoRT. The left panel shows the relationship between the
trial duration (RT) and the trial-specific BOLD activation estimate when a constant duration of 1s regressor
is assumed and signal duration scales with RT (blue). The gray dashed line is a line with a slope of 1 and
intercept of 0. The true BOLD activation is 1, but the model estimates the BOLD activation to be 1x RT
for RT's < 2s. After 2s the linear relationship fails to hold, which explains when an RT modulated regressor
will begin to fail as the amplitude is no longer a reasonable replacement for duration. The middle panel is an
example of BOLD activation estimates for 3 subjects for 2 conditions when the true activation magnitude
is B = .4 for both conditions (no condition effect difference) and the RTs are all less than 2s. The BOLD
activation estimates are given by Bcond = .4 x mean(RTonq) for each condition and subject. The right panel
shows that even though the true condition difference is 0, the estimated condition differences are nonzero

and vary according to S — 51 = .4(mean(RT,) — mean(RT})), and so the contrast estimates are linearly
related to the RT difference.

for those using fMRI activation databases, since the ConsDurNoRT model is typically used to generate
activation estimates and, as the next section underlines, the presence of RT effects is widespread.

Widespread RT activation is not specific to task, revisited

Our real data analyses were modeled to included separate condition regressors and a single RT duration
regressor, following ConsDurRTDur. A total of 7 tasks, with sample sizes ranging from 86 to 94, were
analyzed. The cognitive processes involved in these tasks include attention, temporal discounting, proactive
control, reactive control, response inhibition, resisting distraction, and set shifting. Brief descriptions are
given in Supplemental Table 1 and more detailed summaries are provided in the Methods section (“Details
about tasks involved in real data analysis”) and Supplementary Materials. Comparatively, Yarkoni et al.
(2009) used tasks including 3-back, decision making, emotion ratings and memory in sample sizes of 50, 102,
26, 35 and 39. Our seven tasks emphasize cognitive control to a greater extent and emotional processing
and working memory to a lesser extent, compared to Yarkoni et al. (2009). The focus here is on average
RT-related effects across subjects. This effect estimate will be slightly diminished from a full RT effect,
since it is adjusted for condition difference. The interpretation is the average within-condition RT effect.
Figure 7 shows voxels where the average RT-duration effects were significant across all 7 tasks. Our maps are
consistent with Yarkoni et al. (2009), but with a more spatially widespread effects, which may reflect that
our sample sizes were larger. In particular, the present comparison demonstrated substantially more signal
in the lateral superior parietal cortex.

To illustrate how the RT-based network overlaps with and does not overlap with condition difference
effects, Extended Data Fig. 4 illustrates group average results where only the RT effect was statistically
significant (yellow), where only the condition comparison was significant (blue) and the overlap (green) for
a single contrast from each task where ConsDurRTDur was used. Using the Stroop task as an example,
the expected dMFC activation for incongruent versus congruent is present even though RT was included in
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Fig. 6: Correlation between the contrast difference and difference in average condition RT across subjects
as a function of the average difference in RT between conditions. Since the correlation is driven by between-
subject variability in the difference in RT, there is no requirement that RTs differ between tasks and the
correlation is constant regardless of the RT difference. In the case of ConsDurRTMod (green line, left panels)
the correlation increases when the duration scales with RT for higher RT differences due to increasing model
misfit as RTs increase (see Figure 5).

the time series model. Although there is often overlap in the activation for the RT effect and the condition
comparison, there are regions where only the condition comparison is active.

Discussion

The problem of potential response time confounds for fMRI activation estimates has been discussed for more
than a decade, with little resulting change in how the community approaches analyses and interpretations
of fMRI contrasts. There are three takeaways from the present work. First, we propose a modeling approach
that can adapt to fit data whether or not activation durations scale with RTs. Importantly this model does
not remove the ability to also study RT-specific effects, if they are of interest. Second, this work highlights
an important problem that has not been discussed previously: the presence of a between-subject confound
of the average RT differences and the potential to introduce artificial associations with variables of interest
at the group level. Finally, we replicate the work of Yarkoni et al. (2009) showing widespread RT-related
effects that are not task specific.

This work presents a model that can adapt to whether or not signal durations scale with RTs, with
limited performance loss. By adding an RT duration regressor to the most commonly used model that only
contains condition-specific regressors, ConsDurRTDur removes RT-driven type I errors in average condition
comparison effects with a slight reduction in power when the signal durations do not scale with RTs and
the RT difference is large. The commonly used ConstDurNoRT model assumes signal durations do not scale
with RTs and the RTDur model assumes signal durations must scale with RTs, and both models fail to
control error rates when these model assumptions are violated (Figure 3). Interestingly, when RTDur is
correct (interaction effect), only a slight power loss results when using ConsDurRTDur, while a 4 regressor
interaction model has a large power loss due to collinearity in the model. This implies the ConsDurRTDur
model can still be useful in detecting condition differences that arise through interactions that follow the
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Fig. 7: Conjunction of the average, within-condition RT effect across ANT, DDT, DPX, motor selective
stop, stop signal, stroop, and CTS. On average, each analysis included around 91 subjects and maps were
corrected for multiple comparisons using a TFCE p-value thresholded at 0.05 using 5000 permutations.

RTDur model, although for regions with a hypothesized interaction, RTDur should be used to maximize
power.

We have also uncovered that subject-specific differences in average RT represent an important group-level
confound. This confound is only present when using ConsDurNoRT, RTDur or ConsDurRTMod when RT
differences are large, whereas the ConsDurRTDur model produces condition difference effects that are free of
this confound. Notably, the average difference in RT across subjects does not necessarily impact correlation
strength, since correlations are driven by variability, in this case variability in RT differences across subjects.
Thus, even if the average RT difference is 0, the first-level models should follow ConsDurRTDur. We have
also shown that when signal durations scale with RTs and ConsDurNoRT is used, other false associations
can be introduced at the group level. When there is a common association between a variable of interest
(e.g., time spent outdoors) and each condition, separately, but no association of this variable with the true
condition difference, the ConsDurNoRT condition difference estimates can have false associations with this
variable. This is a concerning result for users of neuroimaging databases of condition difference estimates,
since ConsDurNoRT is typically used.

Last, our updated RT-effect conjunction analysis across 7 tasks tapping into different mental processes
show widespread shared activation in the so-called “task-positive” network, replicating the previous results
of Yarkoni et al. (2009). This highlights the generality of the RT effect across tasks, and motivates the need
to model these effects across all tasks.
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There may be resistance to adding an RT duration regressor to convert ConsDurNoRT to ConsDurRTDur,
since RT is the measure of interest in behavioral studies and removing RT effects from condition differences
might be argued to be “throwing the baby out with the bathwater”. This argument is paradoxical because if
RT is the effect of interest, why would it be ignored in the fMRI model? ConsDurNoRT can find significant
results for any of the scenarios in Figure 8, and when the data follow “RT effect only” the results likely
reflect false positives as shown in our Type I error simulation results. The ConsDurRTDur model is flexible,
fitting signal when durations do or do not scale with RT. ConsDurRTDur can fit data that follow any of the
scenarios in Figure 8, without resulting in false positives for the “RT effect only” scenario and with a slight
power loss only when there is an interaction between condition and RTs. The flexibility of ConsDurRTDur
means it does not align with a specific behavioral model. If a specific link between the underlying cognitive
theory and the fMRI model is of interest, this requires motivating why that theory would hold and for which
specific regions of interest. Then, for those regions of interest the fMRI model that aligns with the underlying
theoretical model should be used. For example, if theory supports that a region would elicit brain activation
where neuronal duration scales with RT, then RTDur will have the highest power and should be used for
that region rather than ConsDurRTDur. That said, RTDur is not likely appropriate in a whole brain analysis
since it is not designed for regions where the signal duration does not scale with RTs as stated in Grinband
et al. (2008) and illustrated by elevated Type I errors in our simulations.

Condition difference only RT effect only
© ©
2 o
k7 [z /
c L c
O (@]
@) @)
Response Time Response Time
Condition and RT effects Condition x RT interaction
© ©
2 o
g / ®
c c
o) o) /
O @)
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Fig. 8: Examples of the underlying relationship between a behavioral construct and RTs.

Both ConsDurRTMod and ConsDurRTDur assume that mean task activation differs for each condition
while the BOLD/RT relationship is the same for both conditions, analogous to a regression model that
models two parallel lines corresponding to two conditions. Condition differences, when both conditions involve
RTs, will be the same regardless of the value of RT. Conversely, a contrast of a condition involving RTs
vs baseline, or a comparisons of conditions where only some of the conditions involve RTs, will vary by
RT. Any estimate of these contrasts will reference a specific RT. For example, the contrast interpretation
for conditions involving RTs versus baseline correspond to the activation magnitude for a trial with an RT
of 0, which is illustrated in the middle panel of Extended Data Fig. 3 where the condition 1 (orange) has
a negative task versus baseline effect while the condition 2 (blue line) has a small positive effect in the
ConsDurRTDur model. Extended Data Table 1 illustrates examples of contrast interpretations using the
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Stroop task. It may be tempting to use orthogonalization so the interpretations do not correspond to an RT
of 0, but the following section outlines the limitations of this idea.

A common misunderstanding is that collinearity between regressors is problematic and orthogonalization
should be used to remove collinearity or to change parameter interpretation. Orthogonalization is almost
never necessary and is often applied incorrectly, leading to confusion in interpretation (Mumford et al., 2015).
In the case of ConsDurRTDur and ConsDurRTMod, orthogonalization of the RT regressor can change the
interpretations of contrasts so they do not correspond to an RT of 0. Extended Data Table 2 describes various
orthogonalization strategies for ConsDurRTDur and ConsDurRTMod and explains how contrast interpre-
tation is impacted and whether orthogonalization is acceptable. For ConsDurRTDur, orthogonalization of
the RT regressor with respect to each condition (row 1) is problematic because condition differences are no
longer adjusted for RTs. Rows 2 and 3 show how ConsDurRTDur and ConsDurRTMod can orthogonalize
the RT regressor with respect to all RT-based trials, but this introduces a between-subject RT confound,
which is not acceptable. The last row describes a way to center RTs in ConsDurRTMod that avoids the
between-subject RT confound, where all contrasts that previously corresponded to an RT of 0 now corre-
spond to some specific RT, C'. This practice is questionable since, if the RT relationship is positive, selecting
a larger value for C' will inflate the contrast estimate.

Importantly, issues with the contrast interpretations presented in Extended Data Table 1 only arise
in analyses of single group means while group comparisons and associations with other variables are not
impacted by the reference RT value for a contrast, as long as it is constant across subjects.

The present work provides a modeling framework for moving forward, but it is likely that as researchers
start thinking about response times more carefully, the model will need to be further adapted. For example,
it is challenging to simply apply the ConsDurRTDur model to the stop signal task since the overt response
process is unobservable on some trials (i.e. successful stop trials), and the stop process is generally estimated
at a block- or session-level so is unobservable on all individual trials. It is unclear how the absence of this
time in the models impacts results. Although it is beyond the scope of this work to find a solution to this
problem, this is a future direction we will explore.

This work consists of real data analyses as well as simulated data analyses. Simulations are required in
cases where we need to know the ground truth and link the theoretical problems with how these problems
might surface in real data analyses (e.g., how strong the results are and whether they persist at the group
level). As such, the simulations require specifying a large number of parameters including the RT distri-
bution for each condition, effect size for each condition, stimulus length, ISI, within-subject variance and
between-subject variance. Our simulation parameter choices are described in the Methods section and we
feel generated realistic simulated data as the results are consistent with similar studies (Yarkoni et al., 2009;
Brown, 2011; Grinband et al., 2011).

Methods

This fMRI study described below (“Real Data Analysis”) was approved by the Stanford University
Institutional Review Board (approval number: 39322) and complies with all ethical regulations.

Models considered
Data generation and modeling

The interstimulus interval (ISI) was sampled from a Uniform distribution and RT was sampled from an ex-
Gaussian distribution. For RT, a subject specific mean, mg, was obtained by sampling an ex-Gaussian with
parameters fi.¢, ¢ and 1/X\.;. The mean of an ex-Gaussian distribution is the sum of p and 1/\ and in our
Stroop data the within-subject estimates of u were approximately 76% of the mean. Using this information
the 1 and 1/ parameters for fast RTs that differed by ART were defined by prest = .76ms — .T6ART /2
and 1/Arqst = .24dmg — .24ART /2, respectively. The slow RTs were obtained similarly but used addition.
This preserved the desired mean RT difference and also allowed the variance to change with the mean RT,
since A contributes to the variance as well. Values of u,¢, o+ and \,; were based on our Stroop data and the
two-alternative, forced-choice categorization task in Grinband et al. (2008). In both cases distributions were
fit to subject-specific data and then parameters were averaged over subjects. The two-alternative, forced-
choice categorization task RT distribution was defined by a Gamma distribution with shape parameter =
1.7, beta = 0.49. Sampling from this distribution and fitting an ex-Gaussian to that sample resulted in ex-
Gaussian parameters of p,.; = 638, o = 103, and 1/\.; = 699 (mean = 1337, sd = 706.5). The Stroop data
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had faster RTs with less variability, with ex-Gaussian parameters of p,+ = 530, 0.+ = 77, and 1/\.; = 160
(mean = 690, sd = 177.5). The distribution functions from the Scipy module (v 1.9.1) of Python (v 3.9.7)
were used to simulate and estimate the distribution parameters. Trial order was random.

Simulated data where signal duration scaled with RT were created with the convolved RT duration
regressors (RTDur) and data where signal duration did not scale with RT used the constant duration regres-
sors (ConsDurNoRT). The BOLD activation sizes, 3; ;, for the i*" subject for j'" condition (j = 1,2) were
sampled from a Gaussian distribution, NV (Bj,af), where 3, is the true activation magnitude and o7 is the
between-subject variance. The time-series data for the i*" subject, of length T', was created according to

Y =X18i1+XoBia+e €~ N(0,02), (4)

where X; and X, are either the Model 1 or 2 regressors (T x 1) and o2, is the within-subject variance.

In an effort to choose realistic values for 1, B2, 02 and Jg, we considered the first-level effect size
(converting the true f3; to a correlation), second level effect size for a 1-sample t-test (Cohen’s D) as well
as the ratio of the total mixed effects variance to the within-subject variance. Following the definitions of
parameters as given in the model above, the total mixed effects variance for a first-level contrast of parameter

estimates is

O e = (X' X)o7, + cc'of, (5)
where X and c are the first-level design matrix (based on models in Figure 2) and contrast of interest
(Mumford and Nichols, 2006). The contrast of interest for each model corresponded to condition 2 > condition

1 (¢ = [-1,1] for the 2 regressor models and ¢ = [—1, 1,0] for the three regressor model). The ratio of total
standard deviation (SD) to within-subject SD is defined by

SDiorar  /e(X'X)~1c/02, + cc'o}] ©)
SDuyithin c(X'X)"1co2,

Our within-subject effect size for condition versus baseline was between 0.07-0.08 (correlation), ratio of
total variance to within-subject variance, %, ranged between 2-3 and the Cohen’s D for the average
of task versus baseline across subjects was approximately 0.85.

Each run contained 40 trials of each condition and a time resolution (TR) of 1s. Time course length
varied, as it was set to extend 50s past the last stimulus offset. Group analyses included 100 subjects. A
total of 1000 data sets were simulated to calculate power and error rates.

Regressors were constructed by convolving boxcar functions with a Double Gamma hemodynamic
response function (HRF) using the spm HRF within the compute_regressor function from the Nilearn (v
0.9.1) module in Python (v 3.9.7).

Least squares regression was used to estimate the models described in Figure 2 at the first-level including a
set of cosine basis functions (0.1 Hz cutoff) for high-pass filtering generated with the cosine_drift function
from Nilearn (v 0.9.1) in Python (v 3.9.7). At the group level, 1-sample t-tests were used to assess type I
error and power. A correlation of the average difference in RT between conditions and the fMRI contrast
(condition 2 vs condition 1) was estimated for each group analysis.

Since RT and ISI values are random, the contribution of the design matrix, X, to the overall variance
varies between samples (Equation 5) and the true effect size was variable. Therefore, to calculate the first-
level true effect size 100 data sets were simulated and the partial correlation coefficient for one condition,
controlling for the other condition and cosine basis set, was estimated and then averaged over the 100 data
sets to serve as the true within-subject effect. The variance ratio, SDiotar/SDwithin , Was estimated by
simulating 100 design matrices. Cohen’s D estimates were based on 5000 simulated within-subject model
estimates for the task versus baseline contrast.

Real data analysis

Informed consent was obtained from all human participants and participants were paid $20 per hour for
their participation in the MRI sessions and $10 per hour for participation in practice and setup time. None
of the analyses were preregistered. No statistical methods were used to determine sample sizes, although our
sample is about twice as large as the data sets involved in a similar analysis in Yarkoni et al. (2009).
Prospective participants for the study were recruited from the Stanford campus and surrounding San
Francisco Bay Area using several methods including paper flyers, the Stanford Sona recruitment system,
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local newspapers ads, the Poldrack Lab website, online resources such as Craigslist, and through email
listservs maintained by the Stanford Psychology Department. All recruited participants met the following
criteria: have a minimum 8th grade education, speak English fluently, right-handed, have normal or corrected
to normal vision and no color-blindness, are between 18-40 years old, have no current diabetes diagnosis,
have no history of head trauma with loss of consciousness, cerebrovascular accident, seizures, neurosurgical
intervention, stroke, or brain tumor, have no current major psychiatric disorders (including schizophrenia and
bipolar disorder) or substance dependence, are not currently using any medication for psychiatric reasons,
are not currently pregnant, and have no other contraindications to MRI.

A total of 113 participants were recruited for the study. 3 participants were dropped during their first
scan session due to complications in the scanner leaving 110 participants. The mean age was 23.8 years (sd
= 5.5) and 71 participants were female. The sample had the following demographic distribution: 40% White,
36% Asian, 10% More than one race, 8% Black or African American, 3% Unknown, 2% Native Hawaiian
or Pacific Islander, and 1% American Indian or Alaska Native. The fMRI tasks included: Stroop (Stroop,
1935), Attention Network Test (ANT, Fan et al. (2002)), Dot Pattern Expectancy task (DPX, MacDonald
et al. (2005)), Delayed-Discounting task (DDT, Kirby (2009)), cued task-switching task (CTS, Logan and
Bundesen (2003)), stop signal task (Logan and Cowan, 1984) and a motor selective stop signal task (DeJong
et al., 1995). Brief summaries are provided in Supplemental Table 1 and more detailed descriptions are
provided in the Supplementary materials (“Details about tasks involved in real data analysis”). Data were
acquired using single-echo multi-band EPI using a GE Discovery MR750 3T scanner and a Nova medical 32-
channel head coil. The following parameters were used for data acquisition: TR = 680ms, multiband factor
= 8, echo time = 30 ms, flip angle = 53 degrees, field of view = 220 mm , 2.2 x 2.2 x 2.2 isotropic voxels
with 64 slices.

Raw task behavior during scans were collected using Experiment Factory (https://www.expfactory.org/;
Sochat et al. (2016)) running on Macbook laptops. The raw data can be found at https://openneuro.org/
datasets/ds004636/ and a Data Descriptor paper is available at Bissett et al. (2023).

Data were preprocessed in Python using fmriprep 20.2.0 (Esteban et al., 2019). First, a reference volume
and its skull-stripped version were generated using a custom methodology of fMRIPrep. A BO-nonuniformity
map (or fieldmap) was directly measured with an MRI scheme designed with that purpose (typically, a spi-
ral pulse sequence). The fieldmap was then co-registered to the target EPI (echo-planar imaging) reference
run and converted to a displacements field map (amenable to registration tools such as ANTs) with FSL’s
fugue and other SDCflows tools. Based on the estimated susceptibility distortion, a corrected EPI (echo-
planar imaging) reference was calculated for a more accurate co-registration with the anatomical reference.
The BOLD reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which imple-
ments boundary-based registration (Greve and Fischl, 2009). Co-registration was configured with six degrees
of freedom. Head-motion parameters with respect to the BOLD reference (transformation matrices, and six
corresponding rotation and translation parameters) are estimated before any spatiotemporal filtering using
meflirt (FSL 5.0.9, Jenkinson et al. (2002)). BOLD runs were slice-time corrected using 3dTshift from AFNI
20160207 (Cox and S (1997), RRID:SCR_005927). The BOLD time-series (including slice-timing correction
when applied) were resampled onto their original, native space by applying a single, composite transform to
correct for head-motion and susceptibility distortions. These resampled BOLD time-series will be referred
to as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series were resam-
pled into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a
reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep.
Automatic removal of motion artifacts using independent component analysis (ICA-AROMA, Pruim et al.
(2015)) was performed on the preprocessed BOLD on MNI space time-series after removal of non-steady
state volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-
maximum). Corresponding “non-aggresively” denoised runs were produced after such smoothing. These data
were used in our time-series analysis models.

Data were analyzed using FirstLevelModel from nilearn in Python (version 3.9.7) (Abraham et al.,
2014). A double gamma HRF was used for convolution and an AR(1) model addressed temporal auto
correlation. Specifically the spm HRF setting was used, which follows the HRF from the SPM software package
with a 6s delay of response (relative to onset), a 16s delay of undershoot (relative to onset), 1s dispersion of
response, 1s dispersion of undershoot, a ratio of response to undershoot of 6 and a 32s long kernel. Regressors
were included for each condition, versus baseline, as well as a single RT modulated regressor, similar to the
simulation analysis model ConsDurRT. The RT modulated regressor included the uncentered RT values.
The contrast of the RT modulated regressor was the contrast of interest in our models and represents the
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average relationship between BOLD activation and RT within condition, since condition specific regressors
were also included. Nuisance regressors in the time-series analysis included the following from the fmriprep
output: cosine basis functions (corresponding to a highpass filter cutoff of 128s) and the average time courses
for the CSF and WM as estimated by fmriprep.

Subjects were excluded within-task for the following general reasons: missing 1 or more files required to
analyze the data, having more than 20% high motion time points (measured by Framewise Displacement >
.5 or SD of DVARS > 1.2), having more than 45% missing responses, a subjective poor performance rating
assessing high choice and/or omission error rates in at least one condition of the task, and when subjects
omitted most of their responses towards the end of the task scan. Specific exclusion for the stop signal tasks
are less than 25% successes for stop trials or more than a 75% successful stop rate. For the Delay-Discounting
tasks, subjects were excluded if they made the same choice on all trials. Last, if there were exclusions on
more than half the tasks for a subject, that subject was completely excluded. Exclusions for each task are
reported in the supplemental materials (“Exclusion information by task for real data analysis”).

Group models were estimated using Randomise (Smith and Nichols, 2009) and included either a single
column of 1s (group mean) or a column of 1s along with the difference in mean RTs. Statistics maps were
thresholded, controlling for family-wise error rate, using the Randomise TFCE statistic below 0.05, based
on 5000 permutations. Two sided hypotheses were studied using an F-contrast. A conjunction map was
constructed by taking the overlap of the thresholded, binarized map for each of the 7 tasks (Nichols et al.,
2005).

Data availability

The conjunction map (Figure 7) and separate RT-based activation maps for each task used to generate the
conjunction map are available in the form of 1-pvalue maps at https://neurovault.org/collections/13656/.
Full, raw fMRI data sets are available on OpenNeuro at https://openneuro.org/datasets/ds004636/ .

Code availability

The code for all analyses are shared at https://doi.org/10.5281/zenodo.8083510 (simulations) and https:
//doi.org/10.5281 /zenodo.8083518 (real data analysis).
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Extended Data
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Extended Data Fig. 1: Type I errors as RT difference between conditions increases (ISI=3-
6s). This figure illustrates that results are similar to when the ISI ranged between 2-4s (results in main
manuscript, Fig. 3). The two-alternative, force-choice categorization task (Categorization) RT distribution
was used in the top panels, while Stroop RT distribution was used in the bottom panels, both with an ISI
between 3-6s and the inference of interest was for the 1-sample t-test of the condition difference effect with
100 subjects. 2500 simulations were used to calculate the error rate.
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Extended Data Fig. 2: Power when the RT difference is 0.8s as the condition difference
increases. Only models that had controlled error rates in Fig. 3 (main text) are shown and since the RT
range of this simulation is not within the range where ConsDurRTMod has controlled error rates, it is
excluded. The two-alternative, forced-choice categorization task RT distribution was used in the top panels,
while Stroop RT distribution was used in the bottom panels. An IST between 2-4s was used and the infer-
ence of interest was for the 1-sample t-test of the condition difference effect with 100 subjects. Model 2,
RTDur, is the true model for the left column (orange line) and model 1, ConsDurNoRT, is the true model for
the right column (blue line), and the corresponding power curves indicate maximal power. When the signal
duration scales with RT (left panel), ConsDurRTDur (red) has some power loss due to model misfit, while
the 4 regressor interaction model (gray line) loses considerable power due to collinearity. When the duration
does not scale with RT (right panels), the ConsDurRTDur model (red line) has similar power to the true
model (blue), illustrating some power loss due to including an RT regressor in the time-series analysis. This
power loss is not seen for shorter RT differences (.1s result in main paper Fig. 4).
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Extended Data Fig. 3: Understanding ConsDurRTDur parameter estimates when RTDur
model is true. When the data follow the RTDur model, this implies an RT by condition interaction where
the condition effects are 0 when the RT is 0. If using the ConsDurRTDur model to fit the data, the difference
between the fitted constant duration regressors is approximately the RTDur difference, albeit with a loss in
power, which is illustrated here. The figure illustrates the ConsDurRTDur model fit, 5y + 81 ConsDurl +
B2ConsDur2 + S3RTDur, to data based on RTDur model, BOLD = 1+ 1 % RTDurl + 4 x RTDur2, where
the RTs are evenly spaced between .5 and 1.2 for condition 1 and 2.5 and 3.5 for condition 2. The first 5
trials are condition 1 and second 5 trials are condition 2. The first two panels break down components of
the ConsDurRTDur model fit to RTDur data, where the first panel is the intercept plus the RTDur effect
(Bo + B3RTDur, green), which overestimates the BOLD for the first condition and underestimates it for the
second condition. The middle panel shows how the condition 1 effect from ConsDurRTDur accounts for the
overestimation in the first panel and the condition 2 effect accounts for the underestimation. Summing the
green, orange and blue lines of the first two panels yields the black line in the third panel, showing similar
model fits, which implies the condition difference effect from ConsDurRTDur (peak differences between yel-
low and blue lines of the middle panel) is a close approximation to the true effect from RTDur. This figure
also illustrates that the condition versus baseline effects, alone, from ConsDurRTDur have limited interpre-
tation as they reflect the projected effect when the RT is 0 and can be negative, so they have limited use.
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Extended Data Fig. 4: RT-based activation, RT-adjusted condition comparisons and their over-
lap. Comparison of RT-based activation network (yellow), specific condition comparison contrast activation
(blue) and their overlap (green). The condition comparison contrast for a given task is described in the panel
title. In all cases the ConsDurRTDur model was used and the networks are based off of a randomise TFCE
family-wise error corrected p < 0.05 for a 2-sided one-sample t-test at the group level.



Contrast type

Example

Stroop task)

Interpretation in

ConsDurRTDur/ConsDurRTMod

Condition (RTs) vs.

baseline

Condition (RTs) vs.

Condition (RTSs)

Incongruent vs. baseline

Incongruent vs. Congruent

Condition difference
(same for all RT's)

Incongruent activation when RT is 0

Extended Data Table 1: Contrast interpretation examples using the Stroop task. Contrast inter-
pretation only refers to trials with a specific RT value for condition versus baseline comparisons (or condition
comparisons where only some conditions involve RTs) as described by example contrasts in this table.

Model Orthogonalization Implication of orthogonalization Acceptable?
procedure for contrasts in Extended Data
Table 1
ConsDurRTDur Replace RTDur with residual RT adjustment has been neutralized, No
from: rendering the contrast estimates to be
RTDur ~ Condl + Cond2 equivalent to ConsDurNoRT.
ConsDurRTDur Replace RTDur with residual Contrasts that correspond to RT of 0 No
from: now correspond to the mean RT of the
RTDur ~ all_trials run. Between-subject RT confound has
been introduced.
ConsDurRTMod Center RTs by mean(RT), Contrasts that previously corresponded No
(all RTs<2s) across run to an RT of 0 now correspond to the
mean RT of the run. Between-subject
RT confound has been introduced.
ConsDurRTMod Center RT's by the same con-  Contrasts that previously corresponded = Maybe

(all RT's<2s)

stant, C, in all runs (any C
within range of RTs is fine)

to an RT of 0 now correspond to an RT
of C

Extended Data Table 2: Impact of orthogonalization on contrast interpretation. Orthogonal-
ization examples that describe how orthogonalization may be carried out and the implication on the
interpretation of the original model’s contrast estimates (Extended Data Table 1). Note that “condl” and
“cond2” are constant duration regressors for each condition and “all_trials” is a constant duration regressor
including all trials with RTs.
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Supplementary Materials

Details about tasks involved in real data analysis

Table S1: fMRI task summaries

Age N

Name Description N mn(sd) Female

Tests three aspects of attention or

Attention Network Test “attentional networks”: alerting, 91 24(5) 60

(ANT) orienting, and executive control

Measure of temporal discounting, the
Delay-Discounting Task tendency for people to prefer 36 24(6) 57
(DDT) immediate monetary rewards over

delayed rewards

Measure of individual differences in
cognitive control including proactive 91 24(5) 61
and reactive control modes

Dot Pattern Expectancy
(DPX)

Measures the ability to engage
Motor Selective Stop Signal response inhibition selectively to 91 24(5) 63
specific responses

Stop-Signal Task Measure of response inhibition 91 24(5) 60

Measure of cognitive control perhaps
Stroop including resisting distraction or 94 24(5) 62
attentional filtering

o Indexes the processes involved in
?g;%)TaSk_SWItChmg Task reconfiguring the cognitive system to 94 24(5) 61

support a new task

The Attention Network Test (ANT) is a task designed to test three attentional networks: (1) alerting, (2)
orienting, and (3) executive control. The ANT combines attentional and spatial cues with a flanker task (a
central imperative stimulus is flanked by distractors that can indicate the same or opposite response to the
imperative stimulus). On each trial a spatial cue is presented, followed by an array of five arrows presented
at either the top or the bottom of the computer screen. The subject must indicate the direction of the central
arrow in the array of five. The cue that precedes the arrows can be non-existent, a center cue, a double cue
(one presented at each of the two possible target locations), or a spatial cue that deterministically indicates
the upcoming target location. Each network is assessed via reaction times (RTs). The alerting network
contrasts performance with and without cues, the orienting network contrasts performance on the task with
or without a reliable spatial cue, and executive control (conflict) is measured by assessing interference from
flankers.

The Dot Pattern Expectancy (DPX) task measures individual differences in cognitive control. Participants
are presented with a cue made up of dots. This cue can be a valid cue — referred to as A (e.g., ”:”) — or an
invalid cue — referred to as B (e.g., 7..”). Next a probe is presented, also made up of a simple dot formation.
This probe can be valid (X) or invalid (Y). Participants are instructed to respond to valid probe and cue
combinations (targets — AX combinations) with a key press (e.g., “x”) and all others (non-targets) with a
different key press (e.g., “m”).

The Delay-Discounting Task (DDT) is a measure of temporal discounting, the tendency for people to
prefer smaller, immediate monetary rewards over larger, delayed rewards. Participants complete a series of 27
questions that each require choosing between a smaller, immediate reward (e.g., $25 today) versus a larger,
later reward (e.g., $35 in 25 days). The 27 items are divided into three groups according to the size of the
larger amount (small, medium, or large). Modeling techniques are used to fit the function that relates time
to discounting. The main dependent measure of interest is the steepness of the discounting curve such that
a more steeply declining curve represents a tendency to devalue rewards as they become more temporally
remote.

The cued task-switching task indexes the control processes involved in reconfiguring the cognitive system
to support a new stimulus-response mapping. In this task, subjects are presented with a task cue followed by
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a colored number (between 1-4 or 6-9). The cue indicates whether to respond based on parity (odd/even),
magnitude (greater/less than 5), or color (orange/blue). Trials can present the same cue and task, or can
switch the cue or the task. Responses are slower and less accurate when the cue or task differs across trials
(i.e., a switch) compared to when the current cue or task remains the same (i.e., a repeat).

The Stop-Signal Task is designed to measure motor response inhibition, one aspect of cognitive control.
On each trial of this task participants are instructed to make a speeded response to an imperative “go”
stimulus except on a subset of trials when an additional “stop signal” occurs, in which case participants are
instructed that they should make no response. The Independent Race Model describes performance in the
Stop-Signal Task as a race between a go process that begins when the go stimulus occurs and a stop process
that begins when the stop signal occurs. According to this model, whichever independent process reaches
completion first determines the resulting behavior; earlier completion of the go process results in an overt
response (i.e., stop-failure), whereas earlier completion of the stop process results in successful inhibition.
The main dependent measure, stop-signal reaction time (SSRT), can be computed such that lower SSRT
indicates greater response inhibition. One variant of the task measures proactive slowing, the tendency for
participants to respond more slowly in anticipation of a potential stopping signal. This variant often uses
multiple probabilities of a stop signal (e.g., 20% and 40%) to manipulate participants’ expectancies about
the likelihood of a stop signal occurring. The extent of slowing in the higher compared to the lower stop
probability conditions is an index of proactive slowing/control.

The motor selective stop-signal task measures the ability to engage response inhibition selectively to
specific responses. In this task, cues are presented to elicit motor responses (e.g., right hand responses, left
hand responses). A stop-signal is presented on some trials, and subjects must stop if certain responses are
required on that trial (e.g., right hand responses) but not others (e.g., left hand responses) if a signal occurs.
In contrast to a simple stop-signal task in which all actions are stopped when a stop-signal is presented,
this task aims to be more like stopping in “the real world” in that certain motor actions must be stopped
(e.g., stop pressing the accelerator at a red light) but others should proceed (e.g., steering the car and/or
conversing with a passenger). Commonly, stop-signal reaction time (SSRT), the main dependent measure
for response inhibition in stopping tasks, is prolonged in the motor selective stopping task when compared
to the more canonical simple stopping task. This prolongation of SSRT is taken as evidence of the cost of
engaging inhibition that is selective to specific effectors or responses.

The Stroop task is a seminal measure of cognitive control. Successful performance of the task requires the
ability to overcome automatic tendencies to respond in accordance with current goals. On each trial of the
task, a color word (e.g., “red”, “blue”) is presented in one of multiple ink colors (e.g., blue, red). Participants
are instructed to respond based upon the ink color of the word, not the identity of the word itself. When the
color and the word are congruent (e.g., “red” in red ink), the natural tendency to read the word facilitates
performance, resulting in fast and accurate responding. When the color and the word are incongruent (e.g.,
“red” in blue ink), the strong, natural tendency to read must be overcome to respond to the ink color. The
main dependent measure in the Stroop task is the “Stroop Effect”, which is the degree of slowing and the
reduction in accuracy for incongruent relative to congruent trials.
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Exclusion information by task for real data analysis

Table S2: Exclusion information for Attention Network task.

Incomplete Subject High No response Stopped Poor per-

data omitted motion on >45% of performing formance
(issues with  >20% total trials task at end (subjective)
behav. > volumes of scan
50% of
tasks)

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 1

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 1 0 0
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Table S3: Exclusion information for Delay-Discount task.

Incomplete Subject omitted High No response Stopped Poor per- Made
data (issues with motion on >45% of performing formance same
behav. > 50% >20% total trials task at end  (subjec- choice on
of tasks) volumes of scan tive) all trials
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 1 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
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Table S4: Exclusion information for Dot Pattern Expectancy task.

Incomplete Subject High No response Stopped Poor per-

data omitted motion on >45% of performing formance
(issues with  >20% total trials task at end (subjec-
behav. > volumes of scan tive)
50% of
tasks)

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1
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Table S5: Exclusion information for Motor Selective Stop Signal task.

Incomplete Subject High No Stopped Poor per- >75% <25%
data omitted motion response performing formance stop stop
(issues >20% on task at end (subjec- success  success
with total >45% of scan tive) rate rate
behav. > volumes of trials
50% of
tasks)
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Table S6: Exclusion information for Stop Signal task.

Incomplete Subject High No Stopped Poor per- >75% <25%
data omitted motion response performing formance stop stop
(issues >20% on task at end (subjec- success  success
with total >45% of scan tive) rate rate
behav. > volumes of trials
50% of
tasks)

o O O O O O O O O O O o O = = o= ===
O O O O O O o oFH R R R O =
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Table S7: Exclusion information for Stroop task.

Incomplete Subject High No response Stopped Poor per-

data omitted motion on >45% of performing formance
(issues with  >20% total trials task at end  (subjective)
behav. > volumes of scan
50% of
tasks)

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 1

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 1
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Table S8: Exclusion information for Cued Task Switching task.

Incomplete Subject High No response Stopped Poor per-

data omitted motion on >45% of performing formance
(issues with  >20% total trials task at end  (subjective)
behav. > volumes of scan
50% of
tasks)

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 1 0 1 0 0

0 1 0 0 0 1

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0
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